Evaluating the Clogging Behavior of Pervious Concrete (PC) Using the Machine Learning Techniques
نویسندگان
چکیده
Pervious concrete (PC) is at risk of clogging due to the continuous blockage sand into it during its service time. This study aims evaluate and predict such behavior PC using hybrid machine learning techniques. Based on 84 groups dataset developed in earlier study, was determined by algorithm combing SVM (support vector machines) particle swarm optimization (PSO) methods. The PSO employed adjust hyperparameters verify performance 10-fold cross-validation. predicting results model were assessed coefficient determination (R) root mean square error (RMSE). importance influential variables evaluated as well. showed that can effectively be used construct predictive for PC. combined has advantage higher reliability validity than random selection. For verification process, able obtain values 0.9469 1.8148 R RMSE, showing accurately PC, guiding mix-design from perspective durability. size most important parameter thickness sample least significant factor affecting behavior. proportions smallest aggregate largest are two design parameters with consideration relatively scores, these aggregates should given special attention future anti-clogging purposes.
منابع مشابه
the relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation
with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...
15 صفحه اولthe effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)
cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...
the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولthe role of task-based techniques on the acquisition of english language structures by the intermediate efl students
this study examines the effetivenss of task-based activities in helping students learn english language structures for a better communication. initially, a michigan test was administered to the two groups of 52 students majoring in english at the allameh ghotb -e- ravandi university to ensure their homogeneity. the students scores on the grammar part of this test were also regarded as their pre...
15 صفحه اولassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cmes-computer Modeling in Engineering & Sciences
سال: 2022
ISSN: ['1526-1492', '1526-1506']
DOI: https://doi.org/10.32604/cmes.2022.017792